このブログ内を検索可能

2024年6月26日水曜日

マジカルマインのシミュレーション(4) ペイアウト率及び全消し率

 再度以下のカードを用いてペイアウト率および全消し率を計算する。

1~25の順列25P7通りすべてのパターンをチェックすればよい…のだがなぜかメモリ不足でできないので、ランダムに番号を生成してそれを複数回行い近似値を得ることにした。

ただ、100回回すのに42秒かかるという事態。となると10000回試行するだけでも4200秒と1時間以上かかってしまう。これはさすがにプログラムがしょぼいか…。

とりあえず翌朝まで回してどうなるかみたいので、翌朝7時までは12時間つまり43200秒あるので、100000回くらい試行することはできそうであるからやってみる。

途中経過

600回試行→

宝箱獲得率左から24%、45%、30%、21%、15%、15%

ペイアウト率107%

全消し率0.3%

結論として若干良いカードらしいことが分かる。このカードが出続ければ徐々にメダルが増えていくという理論になる…が100%そんなことはない。



なお我が作った即席の荒いプログラムは以下。全然きれいではないが、とりあえず正しい結果を返しているのでまあそれなりに役には立つ。

numtomat[x_] := {1 + QuotientRemainder[x - 1, 6][[1]], 

  1 + QuotientRemainder[x - 1, 6][[2]]}; group = Table[Table[0, 6], 9];

pos[number_] := 

  For[j = 1, j <= 1, j++, return = {}; 

   For[i = 1, i <= 54, i++, 

    If[num[[numtomat[i][[1]], numtomat[i][[2]]]] == number, 

     return = Append[return, i]]]; Return[return]];

fall[number_] := 

  For[l = 1, l <= 1, l++, eraselist = {}; 

   If[pos[number] != {}, 

    erasegroup = 

     group[[numtomat[pos[number][[1]]][[1]], 

       numtomat[pos[number][[1]]][[2]]]]; 

    For[k = 1, k <= 54, k++, 

     If[erasegroup == group[[numtomat[k][[1]], numtomat[k][[2]]]], 

      eraselist = Append[eraselist, k]]]; Return[eraselist]]];

erase[list_] := 

  For[r = 1, r <= 1, r++, 

   For[i = 1, i <= Length[list], i++, 

    If[list != {}, 

     block[[numtomat[list[[i]]][[1]], numtomat[list[[i]]][[2]]]] = 0; 

     num[[numtomat[list[[i]]][[1]], numtomat[list[[i]]][[2]]]] = 0]; 

    group[[numtomat[list[[i]]][[1]], numtomat[list[[i]]][[2]]]] = 0]; 

   renzoku = Length[list]; retu = RandomInteger[{1, 6}]; 

   Which[renzoku == 7, odds[[retu]] += 0.5, renzoku == 8, 

    odds[[retu]] += 1.5, renzoku == 9, odds[[retu]] += 4, 

    renzoku == 10, odds[[retu]] += 4, renzoku == 11, 

    odds[[retu]] += 9, renzoku == 12, odds[[retu]] += 11.5, 

    renzoku == 13, odds[[retu]] += 14, renzoku >= 14, 

    odds[[retu]] += 5*renzoku - 51]];

haitouall = 0; kakutokuall = {0, 0, 0, 0, 0, 0};

zenkesi = 0; For[times = 1, times <= 100000, times++, 

 in = RandomChoice[Table[i, {i, 1, 25}], 8];

 block = {{3, 1, 1, 1, 2, 2}, {3, 1, 1, 1, 2, 2}, {3, 2, 2, 4, 2, 

    3}, {3, 1, 2, 4, 2, 3}, {3, 1, 2, 4, 3, 3}, {3, 1, 2, 3, 3, 

    2}, {1, 1, 3, 4, 2, 2}, {1, 3, 3, 4, 2, 2}, {3, 3, 4, 4, 4, 4}};

 num = {{0, 0, 20, 2, 0, 0}, {0, 0, 0, 17, 19, 11}, {4, 12, 0, 0, 0, 

    10}, {16, 0, 22, 9, 6, 0}, {0, 0, 21, 23, 8, 0}, {0, 0, 0, 0, 0, 

    3}, {14, 13, 15, 7, 0, 0}, {0, 0, 18, 0, 5, 25}, {24, 0, 1, 0, 0, 

    0}};

 group = Table[Table[0, 6], 9];

 treasure = {5, 2, 2, 2, 2, 5}; odds = {1, 1, 1, 1, 1, 1}; 

 For[lotta = 1, lotta <= 5, lotta++, groupcount = 0; 

  group = Table[Table[0, 6], 9]; For[i = 1, i <= 54, i++,

   If[group[[numtomat[i][[1]], numtomat[i][[2]]]] == 0 && 

      block[[numtomat[i][[1]], numtomat[i][[2]]]] != 0, 

     groupcount += 1; 

     group[[numtomat[i][[1]], numtomat[i][[2]]]] = groupcount;

     pre = post = 0; first = 0; 

     color = block[[numtomat[i][[1]], numtomat[i][[2]]]];

     While[pre != post || first == 0, first = 1;

       pre = Sum[Count[group[[l]], groupcount], {l, 1, 9}];

       For[j = 1, j <= 54, j++, 

        If[group[[numtomat[j][[1]], numtomat[j][[2]]]] == 0, 

         hidari = migi = ue = sita = {0, 0}; 

         If[numtomat[j][[2]] >= 2, 

          hidari = {numtomat[j][[1]], numtomat[j][[2]] - 1}];

         If[numtomat[j][[2]] <= 5, 

          migi = {numtomat[j][[1]], numtomat[j][[2]] + 1}];

         If[numtomat[j][[1]] >= 2, 

          ue = {numtomat[j][[1]] - 1, numtomat[j][[2]]}];

         If[numtomat[j][[1]] <= 8, 

          sita = {numtomat[j][[1]] + 1, numtomat[j][[2]]}];

         If[

          hidari != {0, 0} && 

           block[[hidari[[1]], hidari[[2]]]] == 

            block[[numtomat[j][[1]], numtomat[j][[2]]]] && 

           group[[hidari[[1]], hidari[[2]]]] > 0, 

          group[[numtomat[j][[1]], numtomat[j][[2]]]] = 

           group[[hidari[[1]], hidari[[2]]]]];

         If[

          ue != {0, 0} && 

           block[[ue[[1]], ue[[2]]]] == 

            block[[numtomat[j][[1]], numtomat[j][[2]]]] && 

           group[[ue[[1]], ue[[2]]]] > 0, 

          group[[numtomat[j][[1]], numtomat[j][[2]]]] = 

           group[[ue[[1]], ue[[2]]]]];

         If[

          migi != {0, 0} && 

           block[[migi[[1]], migi[[2]]]] == 

            block[[numtomat[j][[1]], numtomat[j][[2]]]] && 

           group[[migi[[1]], migi[[2]]]] > 0, 

          group[[numtomat[j][[1]], numtomat[j][[2]]]] = 

           group[[migi[[1]], migi[[2]]]]];

         If[

          sita != {0, 0} && 

           block[[sita[[1]], sita[[2]]]] == 

            block[[numtomat[j][[1]], numtomat[j][[2]]]] && 

           group[[sita[[1]], sita[[2]]]] > 0, 

          group[[numtomat[j][[1]], numtomat[j][[2]]]] = 

           group[[sita[[1]], sita[[2]]]]];]]; 

       groupall = 

        Sum[If[group[[numtomat[k]]] == groupcount, Return[1], 

          Return[0]], {k, 1, 54}]; 

       post = Sum[Count[group[[l]], groupcount], {l, 1, 9}];;]];];

  Which[lotta == 1, erase[fall[in[[1]]]]; erase[fall[in[[2]]]]; 

   erase[fall[in[[3]]]], lotta == 2, erase[fall[in[[4]]]]; 

   erase[fall[in[[5]]]], lotta == 3, erase[fall[in[[6]]]], lotta == 4,

    erase[fall[in[[7]]]], lotta == 5, erase[fall[in[[8]]]]]; 

  onemore = 1;

  

  While[onemore == 1, nonmovelist = Table[Table[0, 6], 9]; first = 0; 

   pre = 0; post = 0;

   

   While[pre != post || first == 0, first = 1; 

    pre = Sum[Count[nonmovelist[[l]], 1], {l, 1, 9}]; 

    For[m = 54, m >= 1, m--, 

     If[group[[numtomat[m][[1]], numtomat[m][[2]]]] != 0 && m >= 49, 

      nonmovelist[[numtomat[m][[1]], numtomat[m][[2]]]] = 1]; 

     If[group[[numtomat[m][[1]], numtomat[m][[2]]]] != 0 && 

       numtomat[m][[1]] <= 8 && 

       nonmovelist[[numtomat[m][[1]] + 1, numtomat[m][[2]]]] == 1 && 

       group[[numtomat[m][[1]], numtomat[m][[2]]]] == 

        group[[numtomat[m][[1]] + 1, numtomat[m][[2]]]], 

      nonmovelist[[numtomat[m][[1]], numtomat[m][[2]]]] = 1];

     If[group[[numtomat[m][[1]], numtomat[m][[2]]]] != 0 && 

       numtomat[m][[1]] >= 2 && 

       nonmovelist[[numtomat[m][[1]] - 1, numtomat[m][[2]]]] == 1 && 

       group[[numtomat[m][[1]], numtomat[m][[2]]]] == 

        group[[numtomat[m][[1]] - 1, numtomat[m][[2]]]], 

      nonmovelist[[numtomat[m][[1]], numtomat[m][[2]]]] = 1];

     If[group[[numtomat[m][[1]], numtomat[m][[2]]]] != 0 && 

       numtomat[m][[2]] >= 2 && 

       nonmovelist[[numtomat[m][[1]], numtomat[m][[2]] - 1]] == 1 && 

       group[[numtomat[m][[1]], numtomat[m][[2]]]] == 

        group[[numtomat[m][[1]], numtomat[m][[2]] - 1]], 

      nonmovelist[[numtomat[m][[1]], numtomat[m][[2]]]] = 1];

     If[group[[numtomat[m][[1]], numtomat[m][[2]]]] != 0 && 

       numtomat[m][[2]] <= 5 && 

       nonmovelist[[numtomat[m][[1]], numtomat[m][[2]] + 1]] == 1 && 

       group[[numtomat[m][[1]], numtomat[m][[2]]]] == 

        group[[numtomat[m][[1]], numtomat[m][[2]] + 1]], 

      nonmovelist[[numtomat[m][[1]], numtomat[m][[2]]]] = 1];

     If[group[[numtomat[m][[1]], numtomat[m][[2]]]] != 0 && 

       numtomat[m][[1]] <= 8 && 

       nonmovelist[[numtomat[m][[1]] + 1, numtomat[m][[2]]]] == 1, 

      nonmovelist[[numtomat[m][[1]], numtomat[m][[2]]]] = 1];

     

     ]; post = Sum[Count[nonmovelist[[l]], 1], {l, 1, 9}];]; 

   For[m = 54, m >= 1, m--, 

    If[nonmovelist[[numtomat[m][[1]], numtomat[m][[2]]]] == 0 && 

      group[[numtomat[m][[1]], numtomat[m][[2]]]] > 0, 

     block[[numtomat[m][[1]] + 1, numtomat[m][[2]]]] = 

      block[[numtomat[m][[1]], numtomat[m][[2]]]];

     group[[numtomat[m][[1]] + 1, numtomat[m][[2]]]] = 

      group[[numtomat[m][[1]], numtomat[m][[2]]]];

     num[[numtomat[m][[1]] + 1, numtomat[m][[2]]]] = 

      num[[numtomat[m][[1]], numtomat[m][[2]]]];

     block[[numtomat[m][[1]], numtomat[m][[2]]]] = 0;

     group[[numtomat[m][[1]], numtomat[m][[2]]]] = 0;

     num[[numtomat[m][[1]], numtomat[m][[2]]]] = 0]]; onemore = 0;

   For[s = 1, s <= 54, s++, 

    If[nonmovelist[[numtomat[s][[1]], numtomat[s][[2]]]] == 0 && 

      group[[numtomat[s][[1]], numtomat[s][[2]]]] > 0, 

     onemore = 1]]];];

 groupwin = Table[Table[0, 6], 9]; groupcount = 0;

 For[i = 1, i <= 54, i++,

  If[groupwin[[numtomat[i][[1]], numtomat[i][[2]]]] == 0, 

    groupcount += 1; 

    groupwin[[numtomat[i][[1]], numtomat[i][[2]]]] = groupcount;

    pre = post = 0; first = 0; 

    color = block[[numtomat[i][[1]], numtomat[i][[2]]]];

    While[pre != post || first == 0, first = 1;

      pre = Sum[Count[groupwin[[l]], groupcount], {l, 1, 9}];

      For[j = 1, j <= 54, j++, 

       If[groupwin[[numtomat[j][[1]], numtomat[j][[2]]]] == 0, 

        hidari = migi = ue = sita = {0, 0}; 

        If[numtomat[j][[2]] >= 2, 

         hidari = {numtomat[j][[1]], numtomat[j][[2]] - 1}];

        If[numtomat[j][[2]] <= 5, 

         migi = {numtomat[j][[1]], numtomat[j][[2]] + 1}];

        If[numtomat[j][[1]] >= 2, 

         ue = {numtomat[j][[1]] - 1, numtomat[j][[2]]}];

        If[numtomat[j][[1]] <= 8, 

         sita = {numtomat[j][[1]] + 1, numtomat[j][[2]]}];

        If[

         hidari != {0, 0} && 

          block[[hidari[[1]], hidari[[2]]]] == 

           block[[numtomat[j][[1]], numtomat[j][[2]]]] && 

          groupwin[[hidari[[1]], hidari[[2]]]] > 0, 

         groupwin[[numtomat[j][[1]], numtomat[j][[2]]]] = 

          groupwin[[hidari[[1]], hidari[[2]]]]];

        If[

         ue != {0, 0} && 

          block[[ue[[1]], ue[[2]]]] == 

           block[[numtomat[j][[1]], numtomat[j][[2]]]] && 

          groupwin[[ue[[1]], ue[[2]]]] > 0, 

         groupwin[[numtomat[j][[1]], numtomat[j][[2]]]] = 

          groupwin[[ue[[1]], ue[[2]]]]];

        If[

         migi != {0, 0} && 

          block[[migi[[1]], migi[[2]]]] == 

           block[[numtomat[j][[1]], numtomat[j][[2]]]] && 

          groupwin[[migi[[1]], migi[[2]]]] > 0, 

         groupwin[[numtomat[j][[1]], numtomat[j][[2]]]] = 

          groupwin[[migi[[1]], migi[[2]]]]];

        If[

         sita != {0, 0} && 

          block[[sita[[1]], sita[[2]]]] == 

           block[[numtomat[j][[1]], numtomat[j][[2]]]] && 

          groupwin[[sita[[1]], sita[[2]]]] > 0, 

         groupwin[[numtomat[j][[1]], numtomat[j][[2]]]] = 

          groupwin[[sita[[1]], sita[[2]]]]];]]; 

      groupall = 

       Sum[If[groupwin[[numtomat[k]]] == groupcount, Return[1], 

         Return[0]], {k, 1, 54}]; 

      post = Sum[Count[groupwin[[l]], groupcount], {l, 1, 9}];;]];];

 haitou = 0; kakutoku = {0, 0, 0, 0, 0, 0}; 

 For[i = 49, i <= 54, i++, flug = 0; 

  If[SubsetQ[

      groupwin[[1]], {groupwin[[numtomat[i][[1]], 

         numtomat[i][[2]]]]}] == True && 

    block[[numtomat[i][[1]], numtomat[i][[2]]]] == 0, 

   haitou += odds[[i - 48]]*treasure[[i - 48]]; 

   kakutoku[[i - 48]] = 1]]; 

 If[group == {{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 

     0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 

     0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}}, 

  zenkesi += 1]; kakutokuall += kakutoku; haitouall += haitou; 

 If[QuotientRemainder[times, 100][[2]] == 0, 

  Print[{times, N[kakutokuall/times], N[haitouall/times], 

    N[zenkesi/times]}]]]; Print[{N[kakutokuall/times], 

  N[haitouall/times], N[zenkesi/times]}]

マジカルマインのシミュレーション(3) 宝箱獲得処理とオッズアップ

 宝箱のオッズアップはおそらく以下がほぼ正しいと思うのでそれを採用する。

オッズアップはランダムに、獲得済の宝箱にもつく可能性があり以下のテーブルに従う。

7個 +0.5倍

8個 +1.5倍

9個 +4倍

10個 +4倍

11個 +9倍

12個 +11.5倍

13個 +14倍

n個(n>=14) 5*n-51倍 例えばn=14ならば+19倍、n=21ならば54倍

宝箱は最上段の空白と開通しているときに入手できる。そしてオッズを{1,1,1,1,1,1}とし、配当を{5,2,2,2,2,5}などのようにしてそれぞれの宝箱の配当を計算することにする。

宝箱獲得処理については実はグループ分けのプログラムを流用すればよく、これまで空白マスは0としていたがこれをグループ分けすれば、そのグループが上と下でマスがつながっていれば配当獲得となるのである。

すなわち、宝箱の真上に存在するマスのグループが上まで通じている(=上の6マスに最低でも1つ同じグループのマスが存在する)ことを各宝箱でチェックすればよいのである。

よさそうな例は以下。参考youtubeのURL:アニマロッタ8/ロケテスト/マジカルマイン/ファンタジーワンダーチャンス (youtube.com)

これで入った番号は{14, 15, 4, 11, 2, 21, 16, 23}であるが、7球終了時点で以下の状態。
初期値を2つ上の画像のように設定して7球終了時点で番号7つを入れてシミュレートすると以下。当たり前だが完全に一致している。(オッズ配置はたまたま)
オッズアップについては1つが2.5倍、もう1つが12.5倍となっており、下図「オッズ」を見ると確かに場所は違うが、2.5と12.5の表記がある。そして獲得フラグは一番左の列だけちゃんと出ており、3,4,5列目が一見上が空いているようにみえても閉じ込められているので獲得判定になっていないことも確かめられる。なおここの判定には各宝箱の上のマスのグループ番号(空白もグループ化する)が、最上段のグループ番号の組(ここでは{1,1,1,1,1,1})の部分集合であるかどうかを用いている。
これをもって配当の計算ができたので、ペイアウト率及び全消し率も簡単に求めることができる。ペイアウト率はオッズアップがどこにつくかランダムなので完全な正確値ではないが、全消し率は正確に出る。次の記事ではそれについて記述する。

マジカルマインシミュレーション(2) HIT処理と落下処理

 先ほどグループ化の処理を行ったが、HIT処理と落下処理もマジカルマインを構成する重要な処理である。HIT処理についてはHITした番号と同じグループのブロックを消すだけなので実は非常に簡単。

これをグループ化して行列形式にしたものが以下。
1 2 2 2 3 3
1 2 2 2 3 3
1 4 4 5 3 6
1 7 4 5 3 6
1 7 4 5 6 6
1 7 4 6 6 8
7 7 9 10 8 8
7 9 9 10 8 8
9 9 10 10 10 10
確かにグループ分けができており、ここで例えば{13,14,1}にHITしたとするとどうなるか。
グループ7とグループ10のブロックが消えるのでプログラムを構築すると以下になる。
3 1 1 1 2 2
3 1 1 1 2 2
3 2 2 4 2 3
3 0 2 4 2 3
3 0 2 4 3 3
3 0 2 3 3 2
0 0 3 0 2 2
0 3 3 0 2 2
3 3 0 0 0 0
たしかにグループ7とグループ10が消えているのが分かる。

続いて落下処理であるが、これもチェーンボンバーと似たような方式。ただし各ブロックの下にマスがあるかの判定ではなく、各グループのすべてのマスの下にマスがないことが条件となる。
具体的な例を挙げるとすると
〇〇  △△〇
〇××    〇
〇〇×  〇〇
  ××   〇
      〇
ーーーーーーーー
このような状態のとき、一番右の〇グループは動かない。△は1マスだけ落ちる。×は1マス落ち、一番左の〇は1マス落ちる。これをどう処理するか。

まず、グループのいずれかのマスの下に地面があればそのグループは確実に動かない。
それ以外のものは動く「可能性のある」ものとする。
その後、各グループに関してそれらのマスの中に一つでも下に「絶対に動かない」マスがあれば当たり前だがそのグループに属するマスは動かない。
それ以外のマスは1マス分落ちることとなるので
      〇
〇〇  △△〇
〇××   〇〇
〇〇×   〇
  ××   〇
ーーーーーーーー
のようになる。そして再度同じ処理を行うと、今度は×が絶対に動かないマスになり、左の〇と△はともに絶対に動かないマスの上に位置するマスがあるため、動かないこととなる。これで処理は終了する。
以上の考え方をプログラムに適用する。
すると、
1 2 2 2 3 3
1 2 2 2 3 3
1 4 4 5 3 6
1 0 4 5 3 6
1 0 4 5 6 6
1 0 4 6 6 8
0 0 9 0 8 8
0 9 9 0 8 8
9 9 0 0 0 0
のグループに対して(7と10グループは13,14,1番HITにより消えている)
0 1 1 1 0 0
0 1 1 1 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 1 1 0 0 0
1 1 0 0 0 0
となり(1=停止、0=落ちる)、確かに落ちるor落ちない判定ができている。
そして落ちるブロックをすべて1段ずらしてまた同じ処理を繰り返し、状態が変わらなくなるまで繰り返せば落下処理は確定する。これをプログラムで構築すると
0 1 1 1 0 0
0 1 1 1 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 1 1 0 0 0
1 1 0 0 0 0
上:1回目落ちるものと落ちないものの区別
下:1マス分落ちた後の状態
0 2 2 2 0 0
1 2 2 2 3 3
1 4 4 0 3 3
1 0 4 5 3 6
1 0 4 5 3 6
1 0 4 5 6 6
1 0 9 6 6 8
0 9 9 0 8 8
9 9 0 0 8 8
そしてその次の操作で
0 1 1 1 0 0
0 1 1 1 1 1
0 1 1 0 1 1
0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1
0 1 1 0 1 1
1 1 0 0 1 1
上:2回目落ちるものと落ちないものの区別
下:1マス分落ちた後の状態
0 2 2 2 0 0
0 2 2 2 3 3
1 4 4 0 3 3
1 0 4 5 3 6
1 0 4 5 3 6
1 0 4 5 6 6
1 0 9 6 6 8
1 9 9 0 8 8
9 9 0 0 8 8
確かに右ブロック群は1マス落ち、左ブロック群は2マス落ちていることが分かる。
これにより落下処理は完了したので、いよいよ入賞番号が与えられれば最終的なブロックの配置が確定することになるので、実際に確かめてみる。
ちなみに入賞した番号の順によって結果は変わることに注意する。
具体例として
2 2 1
1 1 2
1 1 2
2 2 3
のカラーであった場合、12マス目→4マス目が消えた場合
2 2 0
1 1 1
1 1 2
2 2 2
からの
0 0 0
0 0 0
2 2 2
2 2 2
になるのに対して、
4マス目→12マス目が消えた場合
0 0 1
0 0 2
2 2 2
2 2 3
からの
0 0 0
0 0 1
2 2 2
2 2 2
になるので違う。

なので最初3球同時消え+2球同時消え+順に1球ずつ3回、に分けなければならない点に注意する。実際の消滅例をいくつか動画のもので試せばプログラムの正確性は保証されてくるのでさっそくやりたい。
すると以下の結果になった。

残っているブロックの位置およびグループ分け、そして番号配置も完全に一致。これを持って我のマジカルマインのブロック関係のプログラムは正しいことがおそらく証明された。

となれば次は宝箱GET判定とオッズアップ判定、そしてオッズ処理を行って期待値計算や全消し確率の計算にもっていく。ここまで来ればほぼ完成に近い状態で、まもなくマジカルマインのペイアウト率が計算できるであろう。


マジカルマインシミュレーション(1) 初期配置データ化とグループ化

カジプロのブラックジャックでは勝てないことも分かったので、テキサスホールデムで他プレイヤーに勝ちまくる作戦を考える前に、少々息抜きでマジカルマインのペイアウト率のシミュレーションを行う。

プログラムなどはいずれ動画化してアップロードする可能性もある。アニマ8のロケテ動画を挙げるものは多く、我はわざわざ川崎まで新幹線で遠征したがあまりプレイしていないので撮れ高はそこまでない。全消しもなければファンタジーJPもない。(ファンタジーJPCは見れて他の人のJPCは結構見れてBGMも堪能できた。なお我はそこそこWCには行ったがJPCには一度も行かなかった)

なおここで注意すべきことは、初期配置とボール入賞番号が与えられたからといって一意に結果が決まるわけではないという点で、その理由はオッズアップがどこの宝箱につくかわからないからである。

しかしながら最終的な配置や全消し率は計算できるので、それらも計算しようと思う。

なおこのプログラムはビンゴガーデンやビンゴファームのようにそこまで簡単ではない。しかしアニマドロップほど難しくはない。かつてアニマ5の通常ゲームをことごとく再現した者にとってはマジカルマインのシミュレーションくらいはたやすい。はず。


ではまず初期配置をデータ化する。今回は赤=1、緑=2、青=3、紫=4として処理し、番号もあわせて格納した6*9*2=108個のデータを作成する。


そして肝心のグループ分けについては以下のモデルを考える。

〇〇〇△△

××〇△〇

×〇〇△〇

×△〇〇〇

これをグループ分けしたい場合どうすればよいか。以前アニマドロップのプログラム構築の際やったのだがだいぶん忘れたので考え直す。

まずグループごとにどこまで続くかをチェックする。

例えば左上に1とつけたならば、その周囲を探索していき隣り合っている番号をチェックする。すなわち1→2→3→8→13→12,18→23→24→25→20→15のように進展する。これを繰り返し、新しいグループ1の所属が増えなくなればグループ分け終了である。

すなわち

1 1 1 0 0

0 0 1 0 1

0 1 1 0 1

0 0 1 1 1

のようになる。

次にグループ1に所属していないもので最初のものを2とつけて探索。

1 1 1 2 2

0 0 1 2 1

0 1 1 2 1

0 0 1 1 1

となる。以下これを繰り返すのみ。これによりグループ分けが完了する。

なお初期配置のグループ分けおよび落下後のグループ分けで、その操作は非常に多く使う。

この手法を用いて上の画像をグループ分けしたものが以下。

{{1,2,2,2,3,3},{1,2,2,2,3,3},{1,4,4,5,3,6},{1,7,4,5,3,6},{1,7,4,5,6,6},{1,7,4,6,6,8},{7,7,9,10,8,8},{7,9,9,10,8,8},{9,9,10,10,10,10}}

確かに10個のグループに分けられていることが分かる。

なお例えば適当に、かなり複雑なグループ分けをしてみると…

〇〇△△××

〇△×△△×

〇×〇〇△×

〇〇〇△△×

〇×△△×〇

〇××××〇

〇×△△×〇

〇×△〇×〇

〇〇〇〇〇〇

上は通常の配置規則を逸脱しているがややこしい例を出すには最適。これを先ほどのプログラムに従ってグループ分けさせると

{{1,1,2,2,3,3},

{1,4,5,2,2,3},

{1,6,1,1,2,3},

{1,1,1,2,2,3},

{1,7,2,2,7,1},

{1,7,7,7,7,1},

{1,7,8,8,7,1},

{1,7,8,1,7,1},

{1,1,1,1,1,1}}

となり、入り組んだ形でも確かにグループ分けできていることが分かる。